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Virtual Reality of Stem Cell Transplantation to
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Abstract The search for the fountain of youth continues into the 21st century with hopes that embryonic or
hematopoietic stem cells (SC) will repair injured tissues in the heart, lungs, pancreas, muscles, nerves, liver, or skin. This
commentary focuses on the potential of SC for inducing cardiac regeneration after myocardial injury, the barriers to SC
treatment that need to be overcome for ensuring successful cardiac repair, and the experimental approaches that can be
applied to the problem. J. Cell. Biochem. 95: 869–874, 2005. � 2005 Wiley-Liss, Inc.
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Hematopoietic stem cells (SC) reportedly have
the ability to transdifferentiate into epithelial
cells [Krause et al., 2001; Badiavas et al., 2003a;
Badiavas and Falanga, 2003b], cardiac myo-
cytes [Hamill et al., 1981; Klug et al., 1996;
Li et al., 1996; Mar et al., 1997; Scorsin et al.,
1997; Tomita et al., 1999; Wang et al., 2000;
Orlic et al., 2001a,b; Yeh et al., 2003; Madeddu
et al., 2004; Tomita et al., 2004], liver cells
[Petersen et al., 1999; Lagasse et al., 2000;
Theise et al., 2000a,b], bone [Becker et al.,
1999], lung cells [Aliotta et al., 2004], neurons
[Brazelton et al., 2000], and skeletal myocytes
[Gussoni et al., 1999]. This response, with few

exceptions, is seen only in response to injury.
Despite SC offering a promise for tissue re-
generation, important challenges continue to
confront investigators seeking to apply SC
transplantation for cardiac and organ repair
including: (1) identifying the best regenerative
SC type (embryonic, hematopoietic, or mesen-
chymal) for repairing injury; (2) identifying
potential facilitator cells that may augment or
modulate the functions of SC; (3) improving SC
homing to the ‘‘niche’’ in the specific tissue
through exploitation of existing receptor-ligand
interactions; (4) identifying novel tissue-specific
injury antigens that may function as appro-
priate receptors for SC; and (5) identifying
SC growth factors and their signaling path-
ways that may induce SC proliferation and/or
differentiation.

Early studies showed that green fluorescent
protein (GFP)-marked stem cells traffic to
myocardial infarcts and repair injured myocar-
dium in mice [Orlic et al., 2001a,b]. In other
studies, myocytes were found to develop from
mesenchymal bone marrow cells [Makino et al.,
1999], and when mesenchymal stem cells were
expanded ex vivo and injected into areas of
myocardial injury, evidence of myocardial repair
was observed [Kamihata et al., 2001]. Similarly,
embryonic SC injected post-infarction were
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observed to produce long-term improvement
in cardiac function over a period of 32 weeks
[Min et al., 2003]. Infarction mobilized bone
marrow derived cells were also shown to
accumulate in the peri-infarction zone of the
myocardium as both differentiated cardiomyo-
cytes and endothelial cells [Jackson et al., 2001].
Consistent with the aforementioned preclinical
studies, clinical success for improving cardiac
function has been observed with intracoronary
injection of human bone marrow mononuclear
cells (BMC) in clinical trials [Strauer et al.,
2002; Tse et al., 2003; Wollert et al., 2004],
with purified CD34þ cells [Nagamine et al.,
2004] or CD133þ cells (AC133 cells) injected
into the myocardium of patients after MIs
[Stamm et al., 2003], and with intramyocardial
injection of skeletal myoblasts [Smits et al.,
2003].

Evidence of clinical efficacy of human SC to
repair MIs stands in striking contrast to results
from a number of experimental studies in which
genetically modified murine SC, used for track-
ing the development of SC into myocytes or
arteriolar cells, failed to show engraftment or
improvement in cardiac function [Balsam et al.,
2004; Murry et al., 2004; Nygren et al., 2004].
One possible explanation for the disparate
results is that the latter studies used genetically
modified SC that may have increased risk
for immunogenic clearance. Observations from
gene therapy studies in children with severe
combined immunodeficiency disease show that
NeoR gene marked cells induce immune re-
sponses directed at the NeoR gene product
[Young et al., 1994]. This mechanism may, in
part, explain the lack of engraftment of syn-
geneic murine cells genetically labeled with
GFP [Balsam et al., 2004] or transfected with
the b-galactosidase reporter gene driven by a
cardiac-specific b-myosin heavy chain promoter
[Murry et al., 2004]. Alternatively, engraftment
of the genetically modified cells could have
occurred but may have been eliminated before
transdifferentiation or fusion took place.

In contrast, most preclinical studies show
that unmodified syngeneic SC can engraft and
persist for weeks to months in the injured
cardiac tissue albeit with variable functional
recovery. Furthermore, marrow stromal cells
(MSC) from C57BL6 mice appear to induce a
unique immunologic tolerance that permits
them to engraft and create stable chimerism in
the xenogeneic environment of Lewis rats [Saito

et al., 2002]. Interestingly, immunosuppression
of T cell-associated anti-donor responses may
be mediated by factors secreted by MSC
[Bartholomew et al., 2002].

Successful transdifferentationofSCinto myo-
cytes and/or arteriolar cells may be a function
of several factors including the precursor fre-
quency of SC, the type of SC that homes to the
injury and the expression of factors upregulated
during injury that may serve to enhance homing
of SC to the myocardium. To date, investiga-
tions of myocardial repair have fallen into the
following categories: (1) the transplant of bone
marrow, mesenchymal stem cells, fetal cardiac
myocytes, and myocytes into mice or rats
[Hamill et al., 1981; Klug et al., 1996; Li et al.,
1996; Mar et al., 1997; Scorsin et al., 1997;
Tomita etal., 1999;Wang etal., 2000;Orlic etal.,
2001b]; (2) the transplant of human SC into
immunodeficient mice with results suggesting
that transdifferentiation into various cardio-
myocytic cells that facilitate repair does occur
[Yeh et al., 2003; Madeddu et al., 2004; Tomita
et al., 2004; Zhang et al., 2004]; and (3) clinical
studies using directly injected unseparated
bone marrow [Strauer et al., 2002; Tse et al.,
2003], separated populations containing hema-
topoietic SC or CD34þ purified cells [Stamm et al.,
2003; Kang et al., 2004], or myoblasts [Smits
et al., 2003] with results supporting a clinical
benefit. In one study, improvement was also
observed in patients given intracoronary infu-
sion of granulocyte-colony stimulating factor
(G-CSF)-primed peripheral blood stem cells
(PBSC) and G-CSF injections; however, the G-
CSF administration was associated with an
unexpectedly high rate of in-stent restenosis
[Kang et al., 2004].

The electrophysiologic, structural, and con-
tractile properties of fetal cardiac myocytes
that enable functional integration into the
myocardium suggest that fetal cardiac myo-
cytes can repair myocardial injury [Atkins et al.,
1999]. Although many tissue receptors and
their cell-expressed ligands have been identi-
fied, the mechanism (s) for how SC home to
specific organs is unknown. The ability of either
unstimulated or G-CSF primed hematopoietic
SC to traffic to MIs is likely dependent upon the
expression of injury receptors or factors, such as
stromal cell-derived factor-1 (SDF-1), that are
upregulated after injury of cardiac tissue
[Abbott et al., 2004]. Once SC arrive and bind
to SDF-1 via their CXCR receptors [Lapidot
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and Kollet, 2002], SC may need to interact with
other tissue factors to trigger differentiation.
Obviously, the SC need to home, bind, and
persist in large enough numbers in a milieu
that supports growth, proliferation, and differ-
entiation. One major limitation to achieving
effective tissue regeneration by SC, therefore,
may be the low frequency with which stem cell
precursors localize to and persist in the infarct
zone.

In order to deliver high numbers of SC to MIs
while avoiding the clinical risks of bone marrow
harvest or intracardiac injections, we have
adapted a new strategy that involves directly
targeting SC to the infarct. Borrowing from our
experience in retargeting killer T cells to cancer
using bispecific antibody (BiAb) technology
[Sen et al., 2001], we reasoned that the same
strategy could be used to target SC to MIs.
Preclinical studies evaluating the efficacy of
monoclonal antibodies directed at target adhe-
sion molecules and their inhibition of myocar-
dial damage after acute ischemic injury have
explored: VCAM-1 [Kalawski et al., 1998],
ICAM-1 [Hartman et al., 1995; Hawkins et al.,
1996; Gumina et al., 1997; Ishibashi et al., 1999;
Sun et al., 2001], P-Selectin [Hawkins et al.,
1996; Gumina et al., 1997; Nagashima et al.,
1998], E-Selectin [Ma et al., 1993], Mo1/CD18
[Simpson et al., 1988; Aversano et al., 1995],
TNFa receptors 1 and 2 [Irwin et al., 1999],
vascular adhesion protein-1 (VAP-1) [Jaakkola
et al., 2000], and angiotensin receptors [Yang
et al., 1998].

In our first study, we selected anti-VCAM-1 to
target the MI and an anti-c-kit to target stem
cells. A BiAb, anti-c-kit, and anti-VCAM-1, was
produced by chemically heteroconjugating anti-
mouse c-kit to anti-mouse VCAM-1 [Lum et al.,
2004b]. Lin-Scaþ cells from bone marrow
suspensions of C57BL/6 mice were produced
by depleting the lineage positive cells using
a cocktail containing rat anti-Ter119, B220,
MAC-1, GR-1, Lyt-2, and L3T4 monoclonal
antibodies. For these studies, the cells were
first sorted for Scaþ cells using a high speed
MoFlo sorter and then armed with chemically
heteroconjugated anti-mouse c-kit � anti-mouse
VCAM-1 BiAb. The c-kit � anti-VCAM-1 BiAb-
armed lin-Scaþ cells or unarmed control lin-
Scaþ cells labeled with carboxyfluorescein
diacetate succinimidyl diester (CFSE) dye were
injected into mice via the jugular vein 24 h after
the left anterior descending arteries (LAD)

of the mice had been ligated. The mice were
euthanized 24 h after the IV injection, the MIs
were sectioned, and the infarct area from the
mouse that received 100,000 armed lin-Scaþ
cell showed markedly increased numbers of
CFSEþ cells compared to the infarcts of the
control mouse that had received the same
number of unarmed lin-Scaþ cells [Lum et al.,
2004b]. Subsequently, we generated a BiAb
that would target an organ specific injury
protein, myosin light chain (MLC), on injured
myocardium [Mair et al., 1994; Lyn et al., 2000]
by producing anti-human CD45� anti-MLC
(MLCBi).

To test the hypothesis that BiAbs can target
SC to MIs, we armed human G-CSF human
primed PBSC or CD34þ cells with MLCBi and
infused them into nude rats in the absence of
growth factors and tracked the human SC and
their progeny using anti-human HLA-Class I
antibodies. Our goal was to limit the variables
associated with growth factor administration or
immune rejection [Grinnemo et al., 2004] that
may inhibit engraftment and confound inter-
pretation of the results. PBSC or CD34þ cells
purified by Isolex column, armed with MLCBi,
and infused 24 h after a 17 min transient
ligation of the LAD in nude rats led to remark-
able numbers of armed and only a few un-
armed cells present at 48 h in the infarct zone
[Christman et al., 2004; Lum et al., 2004a]. No
SC were seen in the non-infarcted areas of the
rats. After 5 weeks, BiAb-mediated targeting of
human SC to injured myocardium not only
increased the numbers of SC arriving at the
injury but also increased the number of SC-
derived cardiomyocytes in rat hearts as evi-
denced by in situ immunofluorescent detection
of cells co-expressing human Class I and
troponin I [Lum et al., 2004a]. These data are
consistent with those reported for the GFP-
bone marrow cells that differentiated into cells
expressing ANP, MHCa, Tn1, and connexin 43
suggesting various stages of cardiogenic differ-
entiation by BMC [Tomita et al., 2004]. The
persistence of human Class I and disappearance
of human CD45þ cells in the MI areas suggest
that there was preferential engraftment of
somatic cells in the MIs. Moreover, these find-
ings correlated with significant improvement in
cardiac function of rats that received armed
CD34þ cells compared to those that received
unarmed CD34þ cells by echocardiogram eva-
luations [Lee et al., 2004].
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Obviously, these results raise a host of
questions. Although it is clear that murine or
human stem cells can develop into myocytes or
endothelial cells and contribute to functional
recovery in the injured myocardium, it is not
clear whether they can establish functional
electromechanical couplings. Furthermore, the
cell(s) that contribute to short- or long-term
recovery remain unknown. Carefully control-
led laboratory studies as well as well-designed
clinical trials are needed to answer these
questions. Our approach, however, provides a
novel platform from which basic, preclinical,
and clinical investigations can be launched to
explore the fate and function of transplanted
human SC.

BiAb-mediated targeting of SC to injured
tissue increases the number of SC that arrive
and persist in the injured tissue thereby opti-
mizing the conditions required for performing
kinetic studies to characterize the biochemical
and biosynthetic changes that occur in the
donor cells during the process of engraftment
and differentiation. With increased numbers of
SC targeted to the MI, dose-response rela-
tionships as well as quantitative histological,
morphological, functional analyses can be
addressed in both acute and chronic preclinical
models, and the mechanism(s) for cardiac repair
can be elucidated. Specifically, if there are
enough cells to track, a more accurate assess-
ment of the frequency of fusion and/or transdif-
ferentiation can be performed. A recent study
suggests that both fusion and transdifferentia-
tion are involved in myocyte repair or new
myocyte development whereas new blood ves-
sels are derived from transdifferentiation of the
donor SC [Zhang et al., 2004]. Targeting of SC to
MIs may have a major clinical impact not only as
a non-invasive therapy for repairing injured
myocardium but also for targeting SC to repair
other tissues. This approach, however, needs
to be confirmed before it can be translated to
clinical applications.

In conclusion, taken together, these proof-of-
principle studies provide a strong rationale for
utilizing BiAb technology to enhance SC target-
ing to MIs as well as other tissues. In addition to
immediate implications for stem cell research,
these studies have broader implications for the
development of human clinical trials that seek
to circumvent inadequate stem cell recovery or
inadequate localization to injury sites for organ
repair.
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